Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
3.
J Virol ; 95(15): e0029421, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1305506

RESUMEN

The pathogenic mechanisms underlying severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection remain largely unelucidated. High-throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen- and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in transcriptome sequencing (RNA-seq) data from SARS-CoV-2-infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV-2 is a positive-sense RNA virus that replicates in the cytoplasm, it does not have a nuclear phase in its life cycle. Thus, it is biologically unlikely to be in a location where splicing events could result in genome integration. Therefore, we investigated the biological authenticity of HVC events. In contrast to true biological events like mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with coronavirus disease 2019 (COVID-19) and infected cell lines were highly irreproducible. RNA-seq library preparation is inherently error prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spiked-in RNA from an unrelated species, such as the fruit fly, we estimated that ∼1% of RNA-seq reads are artifactually chimeric. In SARS-CoV-2 RNA-seq, we found that the frequency of HVC events was, in fact, not greater than this background "noise." Finally, we developed a novel experimental approach to enrich SARS-CoV-2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV-2-infected cells are extremely rare and are likely artifacts arising from random template switching of reverse transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV-2 fusion to cellular genes and/or integration into human genomes. IMPORTANCE The pathogenic mechanisms underlying SARS-CoV-2, the virus responsible for COVID-19, are not fully understood. In particular, relatively little is known about the reasons some individuals develop life-threatening or persistent COVID-19. Recent studies identified host-virus chimeric (HVC) reads in RNA-sequencing data from SARS-CoV-2-infected cells and suggested that HVC events support potential "human genome invasion" and "integration" by SARS-CoV-2. This suggestion has fueled concerns about the long-term effects of current mRNA vaccines that incorporate elements of the viral genome. SARS-CoV-2 is a positive-sense, single-stranded RNA virus that does not encode a reverse transcriptase and does not include a nuclear phase in its life cycle, so some doubts have rightfully been expressed regarding the authenticity of HVCs and the role played by endogenous retrotransposons in this phenomenon. Thus, it is important to independently authenticate these HVC events. Here, we provide several lines of evidence suggesting that the observed HVC events are likely artifactual.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , ARN Viral/metabolismo , RNA-Seq , SARS-CoV-2/fisiología , Replicación Viral , COVID-19/genética , COVID-19/patología , Línea Celular Tumoral , Humanos , ARN Viral/genética
6.
Vaccine ; 38(41): 6381-6387, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: covidwho-708025

RESUMEN

BACKGROUND: A sense of urgency exists to develop vaccines against SARS CoV-2, responsible for numerous global cases and deaths, as well as widespread social and economic disruption. Multiple approaches have been proposed to speed up vaccine development, including accelerated randomized controlled trials (RCT), controlled human challenge trials (CHI), and wide distribution through an emergency use authorization after collecting initial data. There is a need to examine how best to accelerate vaccine development in the setting of a pandemic, without compromising ethical and scientific norms. METHODS: Trade-offs in scientific and social value between generating reliable evidence about safety and efficacy while promoting rapid vaccine availability are examined along five ethically relevant dimensions: (1) confidence in and generalizability of data, (2) feasibility, (3) speed and cost, (4) participant risks, and (5) social risks. RESULTS: Accelerated individually randomized RCTs permit expeditious evaluation of vaccine candidates using established methods, expertise, and infrastructure. RCTs are more likely than other approaches to be feasible, increase speed and reduce cost, and generate reliable data about safety and efficacy without significantly increasing risks to participants or undermining societal trust. CONCLUSION: Ethical analysis suggests that accelerated RCTs are the best approach to accelerating vaccine development in a pandemic, and more likely than other approaches to enhance social value without compromising ethics or science. RCTs can expeditiously collect rigorous data about vaccine safety and efficacy. Innovative and flexible designs and implementation strategies to respond to shifting incidence and test vaccine candidates in parallel or sequentially would add value, as will coordinated data sharing across vaccine trials. CHI studies may be an important complementary strategy when more is known. Widely disseminating a vaccine candidate without efficacy data will not serve the public health nor achieve the goal of identifying safe and effective SARS Co-V-2 vaccines.


Asunto(s)
Betacoronavirus/inmunología , Investigación Biomédica/ética , Infecciones por Coronavirus/prevención & control , Desarrollo de Medicamentos/ética , Pandemias/prevención & control , Neumonía Viral/prevención & control , COVID-19 , Humanos , SARS-CoV-2 , Vacunación/ética , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA